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Localization phase diagram for a disordered system in a 
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Physik Depament T38, TU Miinchen, D-85747 Garching, federal Republic of Germany 

Received 4 June 1993 

Abstract. A phase diagram for the Iocali.ation-delocaliwtion transition of it two-dimensional 
disordered semiconducting system in a perpendicular magnetic field B is investigated with 
a numerical method. Disorder originates from B random distribution of shallow impurities. 
measured in units of the impurity concentration c. Starting with a tight-binding Hamiltonian and 
an impurity state basis, the localization criterion is defined by means of the qumtum connectivity 
of impurities. Finite-size scaling is employed to study the transition in the B-c parameter space 
On this footing a phase diagram of the localiwtion-delocalization Uansition in the B-c parameter 
space is calculated. At low concentrations c < c1 FE: 0.246a-2, where a is the impurity 
radius, all states are localized. Above CI two nose-shaped areas of a phase of delocdzed 
smtes exist, Lhe tips of which are found at (el, B I )  = (0.246 i O.OOQ-’, 0.013 * 0.001) and 
(er, B3) = (0.67f0.03a-2. 0.76+0.07) with the magnetic field given in terms of aZ1-Z, where 
1 is the Lamor length. Both areas join at (a. B2) = (1.2 i O.~Q-~.  0.233 f 0.009). States 
are well localized at B = 0. An estimate of the localiwtion length exponent is given. The 
transition is discussed in terms of orbital shrinking and interference effecfs, which are safely 
distinguished. The latter mechanism can account for a re-enbant behaviour with respect to the 
magnctic field. The metal-insulator tnnsition is discussed as a function of the electron density 
in conjunction m’tb the phaca diagram. ResuIs are compared with mevious calculations within 
the zero differential overlap approximation. 

1. Introduction 

The metal-insulator transition (MIT) is discussed in the zero-temperature limit under two 
aspects, namely a transition due to many-particle correlation effects known as the Mott- 
Hubbard transition (e.g. Mott 1980) and as a localization4elocalization transition (LDT) first 
investigated by Anderson (1958). The occurrence of the LDT in three-dimensional systems 
and its absence in one-dimensional systems is well understood, but the situation is more 
complex in two dimensions. Analytical work (Abrahams er a1 1979, Wegner 1989) as well 
as numerical studies (MacKinnon and Kramer 1983) have established that in two dimensions 
all states are localized i n  the absence of a magnetic field and spin-orbit scattering. On the 
other hand there are good reasons for an LDT to occur in the presence of a magnetic field or 
spin-orbit scattering, since both have intluence on the localizing destructive interference due 
to backscattering. In this context, one-particle tight-binding models are studied numerically. 
Diagonal disorder is commonly introduced into these models by distributing the site energies 
according to a distribution function (Anderson model). 

t Present address: fritz-Haber-lnstitut der Max-Phck-Gesellschall, Faradayweg 4-6, D-14195 Berlin, Federal 
Republic of Germany. 

0953-8984/93/33M)43+12%07.50 @ 1993 IOP Publishing Ltd 6043 



6044 M Bockstedre and S F Fischer 

In this paper we study numerically the LDT of a two-dimensional disordered system 
in a magnetic field. Our model Hamiltonian contains purely off-diagonal disorder which, 
in contrast to the Anderson model, originates from randomly distributed impurities. The 
impurity concentration thus becomes a measure of the disorder. Such a model for the LDT in 
two-dimensional systems might be applicable to &layer structures grown in semiconductors 
where magnetotransport has been studied by several groups recently (Ye 1990 and references 
therein). Such systems have been investigated in the low-temperature (- 4 K) and low- 
concentration regime (< 10” cm-2), where hopping transport is relevant. This limit is well 
described by current theories (Schirmacher 1990, Shkolovskii and Efros 1984). For the 
high-concentration limit (> 10’’ cm?) subband quantization has been observed (Zrenner 
1985). 

We will be concerned with the intermediate regime, where the question of an MIT is 
still open. As in a preceding paper ( G a m ”  and Fischer 1991) we investigate the LDT in a 
finite-size scaling approach now avoiding the zero-differential overlap approximation, which 
has a substantial effect on the phase diagram in the B-c parameter space. The localization 
criterion is formulated in terms of the quantum connectivity first considered by Root et a1 
(1988). We investigate the phase boundary using the phenomenological renormalization 
group technique (Nightingale 1976). The phase diagram is qualitatively discussed in terms 
of the relevant mechanisms contributing to tile LDT. The MIT is discussed as a function of 
the electron density in conjunction with the phase diagram. The paper is divided into three 
sections. In section 2 we develop the model and reviewed the method. In section 3 the 
results are presented. Section 4 contains a summary and conclusion. 

2. The model and method 

The physical system under consideration consists of shallow impurities disposed in an 
otherwise periodic semiconducting material to form a &layer geometry. The impurities are 
distributed at random on a two-dimensional mesh of length L according to a concentration c.  
Perpendicular to it  a homogeneous magnetic field B is established. The mesh confines the 
impurity positions to its sites, thus avoiding clustering. The mesh width A,d = 1/50fi 
is of the same magnitude as the lattice constant of the host material, when concentrations 
c 4 a-2 are considered. 

The concentration regime of interest for the appearance of the metal-insulator transition 
is below c - a-2 where the average neighbour distance approaches the Bohr radius U of an 
impurity state and above the low concentration hopping regime of about c - 0.1 a-2.  The 
system is treated in the effective medium approach. Starting from a basis of impurity states 
we obtain within the tight-binding one-electron approximation the following eigenvalue 
equation 

where [U) is an impurity state located at ry in the presence of a perpendicular magnetic 
field. The diagonal term E ,  represents the site energy of the impurity, whereas (ulV,li7) is 
the potential matrix element of the impurity states Iu) and IC) at rv and rg respectively of 
the potential contribution of the impurity at ry. In contrast to the Anderson model the site 
energy E” is kept fixed for all impurities. Periodic boundary conditions are applied via the 
minimum image convention (Aoki 1977). 
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In (1) we neglected off-diagonal kinetic energy matrix elements ( u l ( l / 2 m * ) @  + 
(e/c)A)I2lG), w # i; and the sum E,+, (ulV,lw). The contribution of the kinetic energy 
term is small as long as c c U-' applies and B is below the high field limit. The potential 
term is only small when c < 0.3 a-' holds. In general it causes additional diagonal disorder. 
Its role will be discussed in section 3. 

The potential of a shallow impurity is well described by a Coulomb potential in the 
effective medium approximation, but with a magnetic field present there is no closed form at 
hand. Only asymptotic expressions for the ground-state wavefunctions Qx ( T )  are available 
in some limiting cases (Shkolovskii and Efros 1984), I >> a and 1 < a with the Lamor 
length 1 ,  which are of significance in the theory of hopping conduction. However, this 
leaves us with the problem of obtaining expressions for r - a and in the physically crucial 
case 1 N a. In order to circumvent these obstacles inevitably faced with most potentials, 
we proceed with a simple but neat approach. The impurity state is described in a harmonic 
approximation of the impurity potential. 

We then evaluate potential matrix elements consistently assuming a short-range potential 
(see below). The frequency of the oscillator is chosen to yield the zero-field impurity radius 
a: 

R 
m*a 

WO=--.  

The orbitals of an impurity at T ,  are given in terms of an impurity at the origin by 

Q x ( ~ )  = exp - (T  x T ~ ) .  e? QO(T - T ~ )  (3) 
(212 ) 

where the cyclic gauge has been used. The x y  plane of the coordinate system coincides 
with the &layer and B = Be,. Within the harmonic approximation the impurity state is 
separable. The electronic motion perpendicular to the x y  plane is given by a one-dimensional 
oscillator while the magnetic field only has influence on motion in the plane. We restrict 
ourselves to a single-band approximation considering only ground-state orbitals 

with ri = a ( l  + $a41-4)-1/2 and { ( z )  is the ground state of the one-dimensional oscillator. 
The asymptotic form of Q ( T )  certainly decays faster than the asymptotic exponential 
behaviour found at 1 >> a for shallow impurities. But since the transition is expected 
at concentrations higher than 0.1 a-2 the basic results of our model should apply at least 
qualitatively, also for a more realistic potential. As the impurity Hamiltonian is separable 
and as the impurities are confined to the x y  plane, <(z) is independent of T .  when YO in 
(4) is substituted into (3) and integrals over r ( z )  either do not contribute to (1) or can be 
eliminated by shifting the energy scale. 

The overlap matrix element and the site energy are given respectively by 

and 

E ,  =hi2 
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with i2 = ~ ( l  + fa41-4)1/2. The matrix element (ulVrli$ has to be calculated beyond a 
harmonic approximation. This is done in correspondence with a &like shape of the potential, 
as was done by Gammel and Fischer (1991): 

M Bockszedte and S F Fischer 

(ulv,(r)l~) = Voexp - T [ ( r y  - rU)* + (rx - ri)z1 exp -[rr x (r;I -vu)]. ez) (7) 

with VO = f h o&'i2. The value of VO is chosen such that the potential expectation value 
(ulVwlu) in the harmonic approximation is given by (7). 

= (1 + $24[-4)'/2 and VO = 
$ ( I  + $ ~ ~ l - ~ ) - ' / ~ ,  We shall use the impurity radius as a length scale and note that only 
ratios of a2ii-2 = (1 + $'-4)-'/4 and a21-* appear in (5) and (7). Since only a21-' is 
affected by the magnetic field, which is proportional to it, we rake this ratio as a measure 
of B.  This way the phase diagram becomes independent of the impurity radius. The mass 
m* is not important as it merely determines the energy scale, which is of little relevance 
here. 

The criterion for localization of states involves the transition probability between two 
impurity states given by 

( 2:2 ) (i 
Measuring energies in units of hoo one obtains 

with the initial and final states @; and @ j  respectively, and the retarded Green function 

Taking the limit of (8) yields (Root et nl 1988, Gammel and Fischer 1991) 

Following Root et al (1988) we introduce the quantum connectivity 

This quantity will be used in analysing the degree of localization of the states by means 
of finite-size scaling. If all states were localized the quantum connectivitj A;/ should 
decay with increasing distance between the impurities at r, and ~ j .  On the other hand 
with delocalized states existing Aij should not show any specific asymptotic behaviour. We 
introduce a localization length as a function of the concentration and the magnetic field by 
evaluating the second moment of the distribution of the Aij: 

Here the angular brackets denote a configurational average. We also define an energy- 
dependent quantity by restricting the summation over U( in (9) and (IO) on finite energy 
intervals or a single energy E .  Then the energy-dependent transition probability is given by 
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The energy-dependent quantum connectivity is defined according to (11) by 

The corresponding localkation length is obtained by (12) using (13) instead of (11). The 
localization length thus defined is smaller than the system size L. Therefore, whenever 
delocalized states begin to appear in the finite system, one expects that 

F r - L  

whereas the constant factor may depend on the other physical parameters. If the states are 
localized the size dependence of 6~ will be weak, provided the size of the system is large 
enough. We assume that at the transition point of the LDT the localization length of the 
infinite system diverges according to a power law 

6 - IK - Kc]-” 

where the parameter K may describe the amount of disorder (Fastenrath 1990, MacKinnon 
and Kramer 1983) or a physical parameter like the magnetic field or the energy (Huckestein 
and Kramer 1990). Instead of investigating the finite-size scaling directly as has been done 
by various authors for other models (Fastenrath 1991, Huckestein 1990), we approximate 
the transition points using the Nightingale phenomenological renormalization group (PRG) 
equation 

where E, is the renormalized localization length, which is an appropriate scaling variable, 
as has been shown by MacKinnon and Kramer (1983) for the two- and three-dimensional 
Anderson model and by Ohtsuki et al (1992) for a three-dimensional system in a strong 
magnetic field. The PRC equation is a direct consequence of the finite-size scaling hypothesis 
(Barber 1983). The fixed point K;,,, for different system sizes L and L‘ given by (14) 
is an estimate for the transition point K*.  With increasing system size L and L’ the fixed 
point converges to the transition point. An estimate of the localization length exponent U is 
obtained by expansion to first order of around K *  and the fact that (a‘ /aK’)gr .  - L’+i/y  
holds: 

The parameter K needs a physical identification. The LDT will be investigated as a function 
of the disorder parameter concentration and the magnetic field B .  We choose K to represent 
a parameter characterizing lines ( c ( K ) ,  B(K)) in the c-B parameter space. Fixed points K* 
of (14) are found therefore where those lines ( c ( K ) ,  B ( K ) )  intersect the phase boundary. 
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F i y r e  1. Phase diagram of the LM of the system described by (I). The insct is a magnificvion 
of the part for c c 0.6a-2-P~ = (ci, SI), P2 = (CI, Bz) and P3 = (q, B3). Fixed points 

E ;  ',) are presented with e m r  bars (0: L = 15, L' = 16; 0: L = 18, L' = 19; 0: 
L = 18, L' =20; A: L = 20, L' = 22; +: L =25,  L' = 21; e: L = 29, L' = 33). 

3. Results 

A phase diagram for the LDT has been calculated employing the method described before. 
The localization length EL has been computed up to an accuracy of 4 x for system 
sizes from L = 15a up to 33a. The fixed points are obtained from (14) with an accuracy 
of about 10%. The error of the fixedpoints at higher fields is larger. At magnetic fields 
with a2/12 - 1 the statistical fluctuations of CL are not small, since extended states are 
mainly found in the high-energy tails of the density of states. Time-consuming averaging 
over more than four times as many samples helps, but the accuracy of the fixed points 
suffers. The resulting transition points (c:,~,, BL,,,) obtained are thus shown with error 
bars in figure 1. The phase boundary is represented by the full curve and is obtained by 
piecewise polynomial fit  of the fixed points, its smoothness and steadiness being assumed. 

The phase diagram contains sever4 interesting features. First of all there are two 
nose-shaped areas of extended slates. These areas join at the point (cz. 8 2 )  = (1.2 f 
0.2a-2,0.233 f 0.009). The tips of the noses are found at the points (cl, B I )  = 
(0.246 f 0.004a-*, 0.013 rt 0.001) and (c3. B3) = (0.67 f 0.03a-2, 0.76 i 0.07) in the 
phase diagram. The remainder of the parameter plane contains a phase of localized states. 
Second, there are no extended states found at B = 0. However the phase boundary seems to 
approach B = 0 with increasing impurity concentration. In contrast to models with purely 
off-diagonal disorder, showing indication for an LDT even at E = 0 (Debeney 1976 and 
Odagaki 1980), the disorder seems to be strong enough here to provide a short extension 
of wavefunctions. 

In order to estimate the localization length exponent, we evaluate the localization length 
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as a function of the concentration at (q, 5'1). Data of CL of four different system sizes 
L = 25n. 27a, 29u and 33a are used with an accuracy of at least 4 x lo-). The localization 
length data are fitted to polynomials with maximum degree of five. The fixed point itself 
and the slope of the localization length are calculated from these polynomials. The data and 
fitted curves are presented in figure 2. In table 1 the fixed points c ; , ~ ,  and the exponents 

obtained by (15) are given. 

Table 1. Fixed-point cl,', and Y L , L ~  for different L and L' at $l-* = 0.01. 
~~ ~ 

L (U )  L' (a) etL, (a-') VLL' 

33 29 0.248 i 0.002 1.2 * 0.5 
33 27 0.250 i 0.002 0.73 i 0.05 
33 25 0.243 i 0.003 0.52 i 0.1 
29 27 0.251 i 0.003 0.44 i 0.06 
29 25 0.241 & 0.004 0.43 i 0.05 
27 25 0.236 & 0.005 0.39 i 0.06 

0.362 

0.357 

0.352 

Figure 2. Renormalized localizatioo length a L  against c for B = 0.01 and different system 
sizes L. 

Deviations of c;,~, for different system sizes are small except for the values for 
L = 25a. The exponent VL,L, is still increasing with system size and has not converged. 
To get a reliable value larger systems have to be taken into consideration. The exponent 
~29 .33  = 1.2 f 0.5 may be taken as a first approximation and deviations from this value 
are expected to lie within the error bar. Chang e l  al (1990) have shown for the Anderson 
model with a Gaussian distribution of site energies that the estimate of the critical disorder 
obtained by the same method coincide with those obtained by other methods (Bulka er 
a[ 1987). Nevertheless their localization length exponent has not converged either. Our 
estimate ~29 .33  obeys ~29 .33  > 1 and hence fulfills the Harris criterion (Chayes ef al 1986) 
U > 2/d in two dimensions: d = 2. Huckestein (1990) calculated the localization length 
exponent in the limit of a high magnetic field and a white noise potential and has found 
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U = 2.34 0.04. Whether or not our exponent should coincide with theirs cannot be said 
definitely. It is more likely that the exponents are different, since in our case the magnetic 
field is quite small and the magnetic length scale is of the same magnitude as the potential 
length scale. A breakdown of the one-parameter finite-size scaling reported by Aoki and 
Ando (1985) in the quantum Hall regime is not observed in our system. In the light of the 
poor statistics and the insufficient information about U at ( C I ,  B1) it seems to be impossible 
to determine the localization length exponent at (c3- B3), where 1 - a, in a meaningful way. 

During the discussion of the basis set we already mentioned two limiting cases for the 
magnetic field dependence of the impurity state. The question arises if simple interpretations 
of the LDT can be found for these limits. In this context it is informative to investigate the 
phase boundary as a function of the model parameters and to incorporate length scales. 
Since all quantities of the phase diagram can be scaled by the impurity radius, the shape of 
the phase boundary becomes independent of other parameters. 

The magnetic-field-dependent length I and ii affect the matrix elements (5) and (7) in 
different ways. The Lamor length which enters at the phase factor and the field-dependent 
impurity radius ii causes orbital shrinking. The field dependence of ii is low as long as 
I >> a, for 1u2 -Z21 c O.Olaz holds, and becomes significant when 1 < a. Setting r= i / f i  
in the phase factors of (5) and (7) and evaluating some of the fixed points we find that those 
fixed points E;,L, with I > a scale within the numerical error as ,% $BE,L, and those 
with I < a remain unchanged BZ,,,. Hence the LDT occurring at small magnetic 
field, i.e. I > a, is related to interference effects alone. The destruction of interference by 
the magnetic field is thus a destruction of weak localization. The localization of states at 
higher magnetic fields 1 < a is due  to^ orbital shrinking. 

Surprisingly, interference effects can account for a re-entrant phase transition with 
respect to the magnetic field alone. The reason may be found in the behaviour of the 
potential matrix elements (7) of the states. The absolute value of the potential matrix 
elements of the impurity decreases with increasing magnetic field due to interferences in 
the sum (7). The absolute values I Vi,] are distributed between an upper and lower bound, 
the impurity distance rij kept fixed as depicted in figure 3. For example, shifting B from 
0.018 to 0.56, c = 0.8a-* with rij -= 2, decreases the lower and upper bound about 
l/bRwo, ihough VO is only diminished by about one per cent. The decreasing I favours 
localization, as for K j  = 0 no extended states are found in this concentration regime. In 
contrast to this effect the distribution of the phases of the potential coupling and the overlap 
covers an increasing interval with increasing magnetic fields for fixed r;j . For short distances 
rij this interval is small, as can be seen from (5) and (7). This effect induces delocalization, 
since delocalized states appear at finite but small B at first where the bounds on do 
not bear a significant field dependence. 

The phase diagram presented in figure 1 separates areas where all states are localized 
and those where delocalized states are present. At the phase boundary at least one state 
begins to percolate the system. However, the system cannot be said to be metallic unless 
states are delocalized at the Fermi level. Knowledge of the position of the mobility edges 
and of the Fermi level is therefore essential, in order to draw conclusions from the phase 
diagram regarding the MIT. Besides the magnetic field and the impurity concentration we 
have to consider the electron density as a further parameter which affects the position of 
the Fermi level. According to our model this is done by neglecting spin and excluding 
screening effects or many-particle interactions from the discussion. 

The mobility edges are investigated employing the energy-dependent localization length 
c:; is computed over finite energy ranges instead of evaluating it at a single energy to 

M Bockzedre and S F Fischer 
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Figure 3. Absolute value of &u(u[VxlG) 
against r.3 for B = 0.018 and B = 0.18 and 
c = 0.80-2. 

avoid time-consuming averaging. We can estimate the position of the mobility edges within 
the width of the energy intervals. The width of the intervals is chosen smaller than hC2. 

The mobility band opens abruptly to its full width at the phase boundary. The band 
width is constant with respect to B within the nose at (cl, B1) but widens with increasing 
concentration, while the band edges slightly shift to higher energies. The density of states 
and the mobility edges are depicted in figure 4 for c = 0.5& and B = 0.024. Withim the 
nose at ( ~ 3 . 8 3 )  the lower band edge is positioned just above the centre of the density of 
state. The mobility band extends throughout the tail. A reliable estimate of the position of 
the upper band edge cannot be given due to fluctuations of the localization length at the 
tail of the density of states. It seems, though, that almost all states are delocalized beyond 
the lower mobility edge. 

Figure 4. Densiry of states for 
c = 0.5C2 and B = 0.025. Swtes 
bemeen E. and Eo are delocalized. 
The position of the mobility edges 
are E, - 0.76~0 and E. - 2.9fiwo. 

The position of the Fermi level is easily obtained as a function of the electron density 
at a point (c ,  B )  by averaging over the sequence of eigenenergies and inverting it. When 
(c ,  B )  belongs to the phase where delocalized states occur four different regimes of electron 
density can be distinguished. Consider a fixed concentration c and critical fields B, and 
Bb, B, c Bb, belonging to the nose at (cl, B I ) .  For magnetic fields B ,  with Ba < B < Bb, 
delocalized states exist. Suppose that the mobility band width is constant with respect to B ,  
if B, < B < Bb. At the critical fields B, and Bb the Fermi level coincides with the upper 
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and lower band edges for one of the four electron densities respectively. The situation is 
sketched in figure 5 for c = 0.5a-*, Ea - 0.0023 and Bb - 0.043. The following four 
cases can then occur. 

(i) n , ~ , ,  < riel < nel.2. States are delocalized at the Fermi level for magnetic fields B 
with E, < B < Bb. An MIT occurs according to the transition points given by the phase 
boundary. 

(ii) n,1,4 > net > ne,,,. A critical field Be < Bb exists such that the Fermi level is within 
the mobility band for magnetic fields with E,  < B 6 E,. The MIT occurs at critical 
fields within the phase of delocalized states. E, depends on ne, and approaches E, with 
increasing n,l. 

(iii) nd.2 < n,l < ns1,3. The same situation persists as in the previous case. An MIT is 
observed at Bc below Bb, but with E, approaching Bb with increasing n,l. 

(iv) ne, z ne1,3 and n.1 < nd.4. The Fermi level lies above or below the mobility band 
for B with E, < B < Bb. Though an LDT occurs no MIT can be observed. 

M Bockstedte and S F Fischer 

The magnetic field Be and the four electron densities depend on the concentration. 
Finally we discuss the influence of diagonal disorder on part of the phase diagram The 

diagonal disorder introduced in this paper is correlated with the positions of the impurities. 
Diagonal disorder is thus achieved by replacing the site energy by 

except for the prefactor h o ~  this is just the sum ~ , + , ( u l V M l u ) ,  which we omitted earlier. 
We computed the fixed points for L = 18a and L' = 200 in the regime of the nose at 
(cl. E l ) .  This part of the phase diagram is shown in figure 6. It contains essentially the 
same features as the previous one shown in figure 1. The tip of the nose is found at 
(c', E') = (0.238 f 0.04K2, 0.030 &M05) and lies at slightly higher fields than before. 
The shape of the phase boundary resembles that of the previous diagram, but the critical 
fields below B' lie higher than before. 

In a preceding paper (Gammel and Fischer 1991) the same model has been investigated 
within the zero differential overlap approximation. For comparison the scale of the B axis 
of the phase diagram in figure 1 has to be rescaled by a factor of two in order to avoid an 
inconsistency of that paper. 
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Figure 6. Phase diagram of the 
LDT of the system with additional 
diagonal disorder: P = (d, BI), 
Fixed points ( c ; , ~ , .  are 
presented with error bars (0:  

k18. L'=20). 

The phase boundary shows similar features as those of the phase diagrams discussed 
here. There is only one nose shaped phase of delocalized states. The tip of the nose is 
located at ( h i n ,  B-) W (1.6a-', 20kC)-20kG= 0.354 in our units. The LDT occurs at 
considerably higher concentrations than that with the overlap included. We conclude that 
inclusion of the overlap has severe consequences on the shape of the phase boundary and 
is responsible for the existence of the two noses. This is different from studies of the LDT 
in three dimensions in the absence of magnetic fields (Bauer 1989, Ching and Huber 1982), 
where the neglect of the overlap had no major effect. 

4. Summary and conclusion 

In this paper we have investigated the MIT in a two-dimensional tight-binding model with 
off-diagonal disorder with a magnetic field B in a finite-size scaling approach. Disorder has 
been introduced by randomly distributed impurities and the impurity concentration c served 
as a measure of disorder. 

A phase diagram of the LDT has been presented in the B-c parameter space. Two 
noseshaped areas of delocalized states have been found, which join at the point (cz, Bz).  
The tips of the noses are located at (cl. B I )  and (c;. B;) .  At B = 0 only Iocalized states 
have been found. Though the potential range has been short, we expect similar features 
of the phase boundary to occur for long-range potentials. The values of the ci and Ei 
might depend on the potential range. However BI  and B; should not change considerably, 
as is strongly suggested by our investigation of a similar model regarding potentials with 
Coulomb-like asymptotic behaviour (Bockstedte 1992). 

Two mechanisms for the LDT have been explored. At high magnetic fields orbital 
shrinking has proven to localize all states, while interference effects give rise to a re-entrant 
LDT with respect to magnetic field. The latter have been discussed qualitatively in terms of 
a diminished absolute potential coupling between states due to destructive interference of 
the individual potentia1 matrix elements and the behaviour of phase factors with increasing 
field (destruction of weak localization). The orbital shrinking effect is also present in the 
extended model mentioned above, which overcomes the restrictions of a tight-binding basis 
set. 

We included the dependence of the Fermi level on the magnetic field, on the electron 
density, as well as the position of the mobility edges into our discussion of the MIT and 
found that an MIT occurs within the phase of delocalized states depending on a proper choice 
of the electron density. 
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Finally we wish lo mention that our results could be relevant for the interpretation of 
the magnetoresistance data. Even though hopping motion between localized states also have 
to be considered, delocalized states always favour conduction. Thus we expect the sign o f  
the magnetoresistance to change at the critical fields of the MIT. According to our phase 
diagram (figure 1) we predict the magnetoresistance to change its sign at magnetic fields 
B - E ,  and B - B3. Thus two minima of the resistance with respect to the magnetic field 
should be observed due to a MIT for appropriate electron densities. Such a switch o f  sign 
has already been found in recent experiments (Ye 1989) at about B - &. 
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